递归方程解的渐近阶的求法
摘要:递归方程解的渐近阶的求法递归算法在最坏情况下的时间复杂性渐近阶的分析,都转化为求相应的一个递归方程的解的渐近阶。因此,求递归方程的解的渐近阶是对递归算法进行分析的关键步骤。递归方程的形式多种多样,求其解的渐近阶的方法也多种多样。这里只介绍比较实用的五种方法。1.代入法这个方法的基本步骤是先推测递归方程的显式解,然后用数学归纳法证明这一推测的正确性。那么,显式解的渐近阶即为所求。2.迭代法这个方法的基本步骤是通过反复迭代,将递归方程的右端变换成一个级数,然后求级数的和,再估计和的渐近阶;或者,不求级数的和而直接估计级数的渐近阶,从而达到对递归方程解的渐近阶的估计。3.套用公式法这个方法针对形如:T(n)=aT(n/b)+f(n)的递归方程,给出三种情况下方程解的渐近阶的三个相应估计公式供套用。4.差分方程法有些递归方程可以看成一个差分方程,因而可以用解差分方程(初值问题)的方法来解递归方程。然后对得到的解作渐近阶的估计。5.母函数法这是一个有广泛适用性的方法。它不仅可以用来求解线性常系数高阶齐次和非齐次的递归方程,而且可以用来求解线性变系数高阶齐次和非齐次的递归方程,甚至可以用来求解非线性递归方程。方法的基本思想是设定递归方程解的母函数,努力建立一个关于母函数的可解方程,将其解出,然后返回递归方程的解。本章将逐一地介绍上述五种方法,并分别举例加以说明。本来,递归方程都带有初始条件,为了简明起见,我们在下面的讨论中略去这些初始条件。递归方程组解的渐进阶的求法——代入法用这个办法既可估计上界也可估计下界。如前面所指出,方法的关键步骤在于预先对解答作出推测,然后
温馨提示:当前文档最多只能预览
5 页,若文档总页数超出了
5 页,请下载原文档以浏览全部内容。
本文档由 匿名用户 于 2020-11-14 05:15:56上传分享