doc文档 二元一次方程组练习题及答案

教育专区 > 初中教育 > 数学 > 文档预览
8 页 1772 浏览 9 收藏 4.8分

摘要:.第八章二元一次方程组单元测试题一、选择题:(每题3分,共36分))1.下列方程中,是二元一次方程的是(1+4y=6x)2.下列方程组中,是二元一次方程组的是(A.3x-2y=4zB.6xy+9=0�xy4A.�2x3y7�2a3b11�B.�5b4c6�C.D.4x=y24�xy8D.�2�xy4�x29C.��y2x)3.二元一次方程5a-11b=21(A.有且只有一解B.有无数解C.无解D.有且只有两解)4.方程y=1-x与3x+2y=5的公共解是(�x3A.��y2�x3B.��y4�x3C.��y2�x3D.��y25.若│x-2│+(y+3)2=0,则x+y的值是(3A.-1B.-2C.-3D.2)�4x3yk的解,x与y的值相等,则k等于(6.方程组��2x3y5)A.-1B.-2C.-3D.1)7.下列各式,属于二元一次方程的个数有(1①xy+2x-y=7;②4x+1=x-y;③+y=5;④x=y;x22⑤x-y=2⑥6x-2y⑦x+y+z=1⑧y(y-1)=2y2-y2+xA.1B.2C.3D.48.七年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,则下面所列的方程组中符合题意的有()�xy246A.�2yx2��xy246B.�2xy2��xy216C.��y2x29.方程2x+y=9在正整数范围内的解有(A、1个B、2个C、3个�xy246D.�2yx2�)D、4个2mnm1y2n2同类项,则m2n的值为(10.若是

温馨提示:当前文档最多只能预览 8 页,若文档总页数超出了 8 页,请下载原文档以浏览全部内容。
本文档由 匿名用户2020-04-10 12:10:40上传分享
你可能在找
  • .练习一一、选择题:(每小题3分,共24分)1.下列方程中,常数项为零的是()A.x2+x=1B.2x2-x-12=12;C.2(x2-1)=3(x-1)D.2(x2+1)=x+212x322-2=0,③2 +3x=(1+2x)(2+x),④3=0,⑤-8x+1=0中,xxxx2x2.下列方程:①x2=0,②一元二次方程的个数是()A.1个B2个C.3个D.4个3.把方程(x-5)(x+5)+(2x-1)2 =0化为一元二次方程的一般形式是()A.5x2-4x-4=0B.x2-5=0C.5x2-2x+1=0D.5x2-4x+6=04.方程x2=6x的根是()A.x1=0,x2=-6B.x1=0,x2=6C.x
    3.0 分 17 页 | 388.00 KB
  • 实用标准文档练习一一、选择题:(每小题3分,共24分)1.下列方程中,常数项为零的是()A.x2+x=1B.2x2-x-12=12;C.2(x2-1)=3(x-1)D.2(x2+1)=x+212x322 -2=0,③2+3x=(1+2x)(2+x),④3=0,⑤-8x+1=0中,xxxx2x2.下列方程:①x2=0,②一元二次方程的个数是()A.1个B2个C.3个D.4个3.把方程(x-5)(x+5)+ (2x-1)2=0化为一元二次方程的一般形式是()A.5x2-4x-4=0B.x2-5=0C.5x2-2x+1=0D.5x2-4x+6=04.方程x2=6x的根是()A.x1=0,x2=-6B.x1=0
    3.0 分 17 页 | 500.04 KB
  • 一元二次方程根与系数的关系习题一、单项选择题:1.关于的方程中,如果,那么根的情况是(B)(A)有两个相等的实数根(B)有两个不相等的实数根(C)没有实数根(D)不能确定是方程2.设的两根,则的值是(C )(A)15(B)12(C)6(D)33.下列方程中,有两个相等的实数根的是(B)(A)2y2+5=6y(B)x2+5=2x(C)x2-x+2=0(D)3x2-2x+1=04.以方程x2+2x-3=0的两个根的和与积为两根的一元二次方程是 (B)(A)y2+5y-6=0(B)y2+5y+6=0(C)y2-5y+6=0(D)y2-5y-6=0是两个不相等实数,且满足5.如果(A)2(B)-2二、填空题:(C)1,2、如果关于的方程是方程=当的两根
    3.0 分 8 页 | 771.00 KB
  • ...一元二次方程根与系数的关系习题精选(含答案)一.选择题(共22小题)1.(2014•宜宾)若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()Ax2+3x﹣2=0B.x2﹣3x+2 =0C.x2﹣2x+3=0D.x2+3x+2=0.2.(2014•昆明)已知x1,x2是一元二次方程x2﹣4x+1=0的两个实数根,则x1•x2等于()A﹣4B.﹣1C.1D.4.3.(2014•玉林) x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?
    3.0 分 17 页 | 330.50 KB
  • 实用文档一元二次方程的定义提高练习(含答案)一.选择题(共8小题)1.(2012•汉川市模拟)下列方程是一元二次方程的是()A.x2﹣1=yB(x+2)(x+1)=x2C6x2=5..D.2.(2007 •滨州)关于x的一元二次方程(m+1)A.x1=1,x2=﹣1Bx1=x2=1.+4x+2=0的解为()Cx1=x2=﹣1.D无解.3.(2002•甘肃)方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程 ,则()A.m=±2Cm=﹣2.Bm=2.Dm≠±2.4.若关于x的方程(k﹣1)x2﹣4x﹣5=0是一元二次方程,则k的取值范围是()A.k≠0Ck≠0且k≠1.Bk≠1.Dk=0.5.关于x的方程(
    3.0 分 9 页 | 143.00 KB
  • 一元二次方程专题训练一、选择题1、下列方程中,一元二次方程是(2(A)x)1(B)ax2bx(C)x1x21(D)3x22xy5y202x2、方程2x3x11的解的情况是 ()(A)有两个不相等的实数根(B)没有实数根(C)有两个相等的实数根(D)有一个实数根3、下列二次三项式在实数范围内不能分解因式的是()(A)6x2x15(B)3y27y3(C)x22xy 4y2(D)2x24xy5y24、若方程3x25x70的两根为x1、x2,下列表示根与系数关系的等式中,正确的是(x27(A)x1x25,x1�53(C)x1x2,x1�x2735353
    3.0 分 5 页 | 310.54 KB
  • 二元一次方程组实际问题知识点概括:一、相遇问题:两人从不同地点出发,相向而行,直到相遇。 (两人所用时间不同)注意环路与直路的区别,例如在环路问题中,若两人同时同地出发,同向而行,当第一次相遇时,两人所走路程差为一周长。 三、水路行船问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度。解行程问题的应用题时,通常采用线段图或列表进行分析,从而正确地找出等量关系,列出方程(组)解决问题。
    4.8 分 11 页 | 145.49 KB
  • 第二十一章一元二次方程21.1一元二次方程 11课堂讲解一元二次方程的定义、一元二次方程的一般形式、一元二次方程的解(根)、利用一元二次方程建立实际问题模型22课时流程逐点导讲练课堂小结作业提升 在设计人体雕像时 如图,雕像的上部高度AC与下部高度BC应有如下关系:AC∶BC=BC∶2,即BC2=2AC.设雕像下部高xm,可得方程x2=2(2-x),整理得x2+2x-4=0. 知1-导知识点11一元二次方程的定义问题(一)如图,有一块矩形铁皮,长100cm,宽50cm.在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是
    3.0 分 27 页 | 4.08 MB
  • 一元二次方程练习应用练习一、数字问题1、有两个连续整数,它们的平方和为25,求这两个数。 三、平均变化率问题7、某校20xx年捐款1万元给希望工程,以后每年都捐款,计划到20xx年共捐款4.75万元,问该校捐款的平均年增长率是多少? 二、销售利润问题3、某商场销售一批名牌衬衫,平均每天可售出20件每件盈利40元,为了扩大销售量增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售2
    3.0 分 3 页 | 87.83 KB
  • 【基础知识巩固】知识点1.一元二次方程概念只含有一个未知数,并且含有未知数的最高次数是2的整式方程叫一元二次方程。 1、判别下列方程是不是一元二次方程,(1)2x2-x-3=0.(6)1-3=0.x2(2)y-y2=0.4(3)t2=0.(4)x3-x2=1.(7)x23x=2.(8)(x+2)(x-2)=(x+1 )2.(5)x2-2y-1=0.(9)3x2-4x+6=0.(10)3x2=x4-3.2、判断下列方程是否为一元二次方程:(1).x2x1(2).x211(3).xx2(4).x3x2y0
    3.0 分 11 页 | 492.00 KB
本站APP下载(扫一扫)
活动:每周日APP免费下载全站文档
本站APP下载
热门文档