docx文档 直线与圆的方程练习题

教育专区 > 初中教育 > 数学 > 文档预览
11 页 974 浏览 12 收藏 4.6分

摘要:直线与圆的方程复习题一、选择题x+ay−a=0与直线ax−(2a−3)y−1=0垂直,则1.若直线B.-3或1A.2C.2或0a的值为()D.1或02.从集合{1,2,3,4,5,6,7,8,9,10}中任取三个不同的元素作为直线l:ax+by+c=0中a,b,c的值,若直线l倾斜角小于135°,且l在x轴上的截距小于−1,那么不同的直线l条数有A、109条3.已知圆B、110条C、111条C:(xb)2(yc)2a2(a0)限,则直线axbyc0A.第一象限与直线B.第二象限D、120条yC(b,c)与x轴相交,与轴相离,圆心在第一象xy10的交点在C.第三象限D.第四象限4.已知两点M(2,3)、N(3,2),直线l过点P(1,1)且与线段MN相交,则直线l的斜率k的取值范围是34�k�4A.3k�4或k�4B.3�k�4C.43�k�4D.45.已知直线a与直线b垂直,a平行于平面α,则b与α的位置关系是(A.b∥αB.bC.b与α相交αD.以上都有可能6.平行直线5x+12y+3=0与10x+24y+5=0的距离是(2A.131B.131C.265D.26)) 7.过点A(1,1)且与线段3x2y30(1�x�1)相交的直线倾斜角的取值范围是()B.[2,)A.[4,2]C.[0,4]U[2,)2D.(0,4]U[2,]28.过点A(11,2)作圆x+y+2x−4y−164=0的弦,其中弦长为整数的共有()A.16条9.直线B.17条D.34条C.32条l1:ax+(1−a)y−3=

温馨提示:当前文档最多只能预览 8 页,若文档总页数超出了 8 页,请下载原文档以浏览全部内容。
本文档由 匿名用户2020-02-03 09:47:46上传分享
你可能在找
  • 1.由直线A.yx1上的一点向圆x2y26x80引切线,则切线长的最小值为()7B.2C.322D.2.圆x2+y2-4x+4y+6=0截直线x-y-5=0所得的弦长等于(52B.2A.6C .13.若直线yxm和曲线y32m324.已知圆O:A.B.9x2有两个不同的交点,则m的取值范围是(P(1,1),直线l过点y10B.D.5)A.0m32C.3m32D.3� ,且与直线OP垂直,则直线l的方程为()xy0D.xy205.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),则k的值为()A.�3B.�33C.±
    3.0 分 8 页 | 342.37 KB
  • 直线、射线、线段练习(1)一、填空1.我们在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为__________________.2.三条直线两两相交,则交点有_______________ 个.3.如图1,AC=DB,写出图中另外两条相等的线段__________.4.如图2所示,线段AB的长为8cm,点C为线段AB上任意一点,若M为线段AC的中点,N为线段CB的中点,则线段MN的长是__ _____________.图2图15.已知线段AB及一点P,若AP+PB>AB,则点P在.6.已知线段AB=10,直线AB上有一点C,且BC=4,M是线段AC的中点,则AM的长为.7.下列说法中不正确的有
    3.0 分 7 页 | 284.90 KB
  • 4.6 分 8 页 | 808.73 KB
  • Gothedistance课题:直线与直线方程考纲要求:①在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;②理解直线的倾斜角和斜率概念,掌握过两点的直线斜率的计算公式;③掌握确定直线位置的几何要素 ,掌握直线方程的几种形式(点斜式、两点式和一般式),了解斜截式与一次函数的关系.教材复习1.倾斜角:一条直线l向上的方向与x轴的正方向所成的最小正角,叫做直线的倾斜角,范围为0,.斜率:当直线的倾斜角不是 90时,则称其正切值为该直线的斜率,即ktan;当直线的倾斜角等于90时,直线的斜率不存在。
    4.9 分 9 页 | 384.43 KB
  • 回顾:前面学习了直线与圆的哪些问题?(一)直线与椭圆的位置关系2x例题:已知椭圆y214(1)当m为何值时,直线l:yxm与椭圆相交、相切、相离? 小结:研究直线与椭圆的位置关系,一般通过联立直AxByC0线与椭圆方程,消去y(或x)得x(或y)的22yxa2b21一元二次方程mx2nxt0,(1)当0时,直线与椭圆相交 (二)弦长问题x2例题:已知椭圆y214(2)直线l:yxm过椭圆的右焦点,交椭圆于A、B两点,求弦AB的长。
    4.8 分 7 页 | 511.70 KB
  • 复习向量的运算与关系一、向量的直观运算加法:rrrrabba平行四边形法则:三角形法则:rrabrbrarrabrbra目录上页下页返回结束 减法:rrrrabab平行四边形法则: ararurrrrra�babcosaPrjarbrb物理意义:力位移ra功目录上页下页返回结束 rcrura�brbra向量积:rurrra�babsin物理意义:力×力臂=力矩;长度的几何意义 :向量积的长度等于以a,b为邻边的平行四边形的面积或以a,b为邻边的三角形面积的2倍。
    3.0 分 24 页 | 1.20 MB
  • 第三章《直线与方程》测试题一、选择题与直线1.若直线平行,则3mx+(m-1)y+7=0的值为()B.0或7A.7C.0D.42.已知直线l过点(1,2)且与直线2x3y40垂直,则l的方程是( A.3x2y10B.3x2y70C.2x3y50D.2x3y80)3.已知直线axy2a0在两坐标轴上的截距相等,则实数a()A.14.已知直线A.B.1l1:ykx ,则它们的图象可能为()C.1D.2或1D. 5.已知点kA2,2,B(1,3)的取值范围是(10y与线段AB有交点,则实数,若直线kx)�3�(�,4)U�,��A.�2��3�4
    4.9 分 10 页 | 464.92 KB
  • 匀变速直线运动的研究一、选择题1.物体做自由落体运动时,某物理量随时间的变化关系如图所示,由图可知,纵轴表示的这个物理量可能是()A.位移B.速度C.加速度tD.路程O2.物体做匀加速直线运动,其加速度的大小为 2m/s2,那么,在任1秒内()A.物体的加速度一定等于物体速度的2倍B.物体的初速度一定比前1秒的末速度大2m/sC.物体的末速度一定比初速度大2m/sD.物体的末速度一定比前1秒的初速度大2m/s3 .物体做匀变速直线运动,初速度为10m/s,经过2s后,末速度大小仍为10m/s,方向与初速度方向相反,则在这2s内,物体的加速度和平均速度分别为()A.加速度为0;平均速度为10m/s,与初速度同向B
    4.6 分 10 页 | 168.00 KB
  • 直线和圆锥曲线经常考查的一些题型直线和圆锥曲线经常考查的一些题型直线与椭圆、双曲线、抛物线中每一个曲线的位置关系都有相交、相切、相离三种情况,从几何角度可分为三类:无公共点,仅有一个公共点及有两个相异公共点对于抛物线来说 ,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.直线和椭圆、双曲线、抛物线中每一个曲线的公共点问题,可以转化为它们的方程所组成的方程组求解的问题 ,从而用代数方法判断直线与曲线的位置关系。
    3.0 分 71 页 | 4.78 MB
  • Gothedistance板块二.直线的方程典例分析直线方程的四种表示形式【例1】下列四个命题中,真命题是()A.经过定点P0(x0,y0)的直线都可以用方程yy0k(xx0)表示B.经过任意两个不同的点 P1(x1,y1),P2(x2,y2)的直线都可以用方程(yy1)(x2x1)(xx1)(y2y1)表示xyC.不经过原点的直线都可以用方程1表示abD.经过定点的直线都可以用方程ykx b表示【例2】二元一次方程AxByC0表示为直线方程,下列不正确叙述是()A.实数A,B必须不全为零.B.A2B20.C.所有的直线均可用AxByC0(A2B20)表示.D.确定直线方程
    4.9 分 4 页 | 583.00 KB
本站APP下载(扫一扫)
活动:每周日APP免费下载全站文档
本站APP下载
热门文档