动点最值专题
摘要:卓越学府--用心做好教育029-87386446几何最值问题专题1、中垂线模型(两定点)2、角平分线模型(一动点一定点)3、三角形/平行四边形模型(两边之和大于第三边,斜边中线是斜边一半等)4、圆有关(简单了解)例一、1、如图,要在河边修建一个水泵站,分别向张村A和李庄B送水,已知张村A、李庄B到河边的距离分别为2km和7km,且张、李二村庄相距13km.(1)水泵应建在什么地方,可使所用的水管最短?请在图中设计出水泵站的位置;(2)如果铺设水管的工程费用为每千米1000元,为使铺设水管费用最节省,请求出最节省的铺设水管的费用为多少元?2.点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P是x轴上使Q的坐标为得|PA-PB|的值最大的点,Q是y轴上使得QA十QB的值最小的点,则P点的坐标为.自我练习1、如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则PA+PB的最小值为2、如图,两点A、B在直线MN外的同侧,A到MN的距离AC=8,B到MN的距离BD=5,CD=4,P在直线MN上运动,则PAPB的最大值等于如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为cm.4.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C的坐标1为(2,0),点P为斜边OB上的一动点,则PA+PC的最小值为1.卓越学府--
温馨提示:当前文档最多只能预览
8 页,若文档总页数超出了
8 页,请下载原文档以浏览全部内容。
本文档由 匿名用户 于 2019-07-06 13:01:48上传分享