2012高中数学-3.2第4课时课时同步练习-新人教A版选修2-1
摘要:第3章3.2第4课时一、选择题(每小题5分,共20分)1.在棱长为a的正方体ABCD-A1B1C1D1中,M是AA1的中点,则点A1到平面MBD的距离是()A.aB.aC.aD.a解析:以D为原点建立空间直角坐标系,正方体棱长为a,则A1(a,0,a),A(a,0,0),M,B(a,a,0),D(0,0,0),设n=(x,y,z)为平面BMD的法向量,则n·BM=0,且n·DM=0,而BM=,DM=.所以所以令z=2,则n=(-1,1,2),DA1=(a,0,a),则A1到平面BDM的距离是d==a.答案:A2.如图所示,在几何体A-BCD中,AB⊥面BCD,BC⊥CD,且AB=BC=1,CD=2,点E为CD中点,则AE的长为()A.B.C.2D.解析:AE=AB+BC+CE,∵|AB|=|BC|=1=|CE|,且AB·BC=AB·CE=BC·CE=0.又∵AE2=(AB+BC+CE)2,∴AE2=3,∴AE的长为.故选B.答案:B3.若正四棱柱ABCD-A1B1C1D1的底面边长为1,AB1与底面ABCD成60°角,则A1C1到底面ABCD的距离为()A.B.1C.D.解析:第1页共5页如图,A1C1∥面ABCD,所以A1C1到平面ABCD的距离等于点A1到平面ABCD的距离,由AB1与面ABCD所成的角是60°,AB=1.∴BB1=.答案:D4.如图所示,正方体ABCD-A1B1C1D1的棱长为1,O是底面A1B1C1D1的中心,则O到平面ABC1D1的距离是()A.B.C.D.解析:取B1C1的中点E,连结OE,则OE∥C1D1.∴OE∥面ABC
温馨提示:当前文档最多只能预览
7 页,若文档总页数超出了
7 页,请下载原文档以浏览全部内容。
本文档由 匿名用户 于 2019-03-30 22:17:27上传分享