wps文档 圆锥曲线离心率问题

教育专区 > 高中教育 > 数学 > 文档预览
1 页 1851 浏览 18 收藏 4.8分

摘要:《圆锥曲线离心率问题》1.在给定椭圆中,过焦点且垂直于长轴的2弦长为,焦点到相应准线的距离为1,则椭圆的离心率为2.椭圆的离心率为,焦点在x轴且长轴长为C526,若曲线上的点到椭圆的两焦点距离差12的绝对值为8,则曲线的标准方程为13.3.双曲线的一条渐近线与抛物线只xy2yx2121有一个公共点,则双曲线的离心率为a2b.4.椭圆的离心率为,双曲线的渐近线x2y321与椭圆有四个交点,以这四点为顶点的四2边形面积为16,则椭圆方程为.05.双曲线,,,则双曲线离心率为�x2F112AF210xAFyy22AF903121.6.已知椭圆的离心率e=,则实数ka255bk2的值为.【高考链接】221.(2014山东理科)椭圆方程为,x2Cy31211双曲线的方程为,,的离心率之积为,a22b2则的渐近线方程为.2.(2015山东理科)双曲线:的xx22Cy22py211渐近线与抛物线:(p>0)交于a2b2A、B,若△OAB的垂心为的焦点,则的离心率为.0顶点,M在抛物线E上,为等腰三角形,ABM全国)3.(2015A、B为抛物线的左右120顶角为,则E的离心率为.

温馨提示:当前文档最多只能预览 8 页,若文档总页数超出了 8 页,请下载原文档以浏览全部内容。
圆锥曲线离心率问题 第 1 页
本文档由 匿名用户2020-01-26 12:21:24上传分享
你可能在找
  • 4.9 分 8 页 | 802.61 KB
  • ..圆锥曲线大题题型归纳基本方法:1.待定系数法:求所设直线方程中的系数,求标准方程中的待定系数a、b、c、e、p等等;2.齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题;3.韦达定理法:直线与曲线方程联立 要注意:如果方程的根很容易求出,就不必用韦达定理,而直接计算出两个根;4.点差法:弦中点问题,端点坐标设而不求。 也叫五条等式法:点满足方程两个、中点坐标公式两个、斜率公式一个共五个等式;5.距离转化法:将斜线上的长度问题、比例问题、向量问题转化水平或竖直方向上的距离问题、比例问题、坐标问题;基本思想:1.
    3.0 分 17 页 | 230.00 KB
  • 直线和圆锥曲线经常考查的一些题型直线和圆锥曲线经常考查的一些题型直线与椭圆、双曲线、抛物线中每一个曲线的位置关系都有相交、相切、相离三种情况,从几何角度可分为三类:无公共点,仅有一个公共点及有两个相异公共点对于抛物线来说 ,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.直线和椭圆、双曲线、抛物线中每一个曲线的公共点问题,可以转化为它们的方程所组成的方程组求解的问题 ,从而用代数方法判断直线与曲线的位置关系。
    3.0 分 71 页 | 4.78 MB
  • (2019全国1)10.已知椭圆|AF2|2|F2B|,|AB||BF1|C的焦点为F1(1,0),F2(1,0),过F2的直线与C交于A,B两点.若,则x2x2y22y11A.2B.32C 的方程为()x2y2x2y211C.4D.534答案:B解答:由椭圆C的焦点为F1(1,0),F2(1,0)可知c1,又|AF2|2|F2B|,|AB||BF1|,可设|BF2|m, 则1ma|AF2|2m,|BF1||AB|3m,根据椭圆的定义可知|BF1||BF2|m3m2a,得2,所以x2y21311|BF2|aB(,b),得2,|AF2|a,可知A(0
    3.0 分 22 页 | 1.03 MB
  • 圆锥曲线与方程单元测试A组题(共100分)一.选择题(每题7分)1.已知椭圆x2y21上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为(2516)A.2B.3C.5D.7若椭圆的对称轴为坐标轴 ,长轴长与短轴长的和为2.18,一个焦点的坐标是(3,0),则椭圆的标准方程为()A.x2y21916B.x2y2x2y2x2y21C.1D.1251616251693.动点P到点M(1,0 )及点N(3,0)的距离之差为2,则点P的轨迹是()A.双曲线B.双曲线的一支C.两条射线D.一条射线4.中心在原点,焦点在x轴上,焦距等于6,离心率等于A.x2y2x2y2x2y2B.11C.
    3.0 分 8 页 | 301.50 KB
  • 圆锥曲线与方程课题:小结与复习教学目的:双曲线的1.椭圆的定义、标准方程、焦点、焦距,椭圆的几何性质,椭圆的画法;定义、标准方程、焦点、焦距,双曲线的几何性质,双曲线的画法,等轴双曲线;抛物线的定义、标准方程 、焦点、焦距,抛物线的几何性质,抛物线的画法,2.结合教学内容对学生进行运动变化和对立统一的观点的教育教学重点:椭圆、双曲线、抛物线的定义、方程和几何性质;坐标法的应用.教学难点:椭圆、双曲线的标准方程的推导过程 ;利用定义、方程和几何性质求有关焦点、焦距、准线等.授课类型:复习课课时安排:1课时教具:多媒体、实物投影仪教学过程:一、课前预习椭圆双曲线抛物线定义标准方程图形顶点坐标对称轴焦点坐标渐近线方程二、复习引入
    3.0 分 4 页 | 297.50 KB
  • 极点与极线背景下的高考试题王文彬(江西省抚州市第一中学344000)极点与极线是高等几何中的重要概念,当然不是《高中数学课程标准》规定的学习内容,也不属于高考考查的范围,但由于极点与极线是圆锥曲线的一种基本特征 ,因此在高考试题中必然会有所反映,自然也会成为高考试题的命题背景.作为一名中学数学教师,应当了解极点与极线的概念,掌握有关极点与极线的基本性质,只有这样,才能“识破”试题中蕴含的有关极点与极线的知识背景 ,进而把握命题规律.1.从几何角度看极点与极线定义1如图1,设P是不在圆锥曲线上的一点,过P点引E,F,G,H,连接EH,FG两条割线依次交圆锥曲线于四点交于N,连接EG,FH交于M,则直线MN为点P对应的极线
    3.0 分 5 页 | 417.19 KB
  • 高中立体几何教案第二章多面体与旋转体球教案内蒙巴盟奋斗中学傅裕东教学目标1.掌握球的定义.2.掌握球的性质,并能熟练应用;3.通过球的教学,培养学生分析问题解决问题的能力.教学重点和难点重点:球的截面性质 .难点:球面距离的计算.教学设计过程一、复习提问师:圆柱是怎样定义的.生:以矩形的一边为旋转轴,其余各边旋转而成的曲面所围成的几何体叫做圆柱.师:是矩形的边为旋转轴吗? 生:是师:同学们请读p.21定义,然后教师强调指出,是以矩形的一边所在的直线为轴.师:同学们再考虑:圆锥、圆台是怎样定义的.教师要强调边所在的直线为轴.二、讲课题师:以上同学们清楚了圆柱、圆锥、圆台的形成过程
    3.0 分 6 页 | 51.50 KB
  • 滨州市2020-2021学年高二第一学期期末考试数学试题2021.2一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.倾斜角为45°,在y轴上的截距是 -2的直线方程为A.x-y+2=0C.x2y20B.x-y-2=0D.x2y202.已知圆C1:(x3)2(y2)21,C2:(x7)2(y1)236,则圆C1与圆C2位置关系是 A.内切B.外切C.相交D.相离3.已知直线(2λ+1)x-λy-2(λ+1)=0(λ∈R)恒过定点M,则点M的坐标为A.(-2,2)B.(-2,-2)C.(2,-2)D.(2,2)uuuuruuuruuur4
    4.8 分 12 页 | 1.93 MB
  • 第17节锥化与弯曲一、锥化(Taper)(P91)1.作用:缩放物体两端产生锥形轮廓、光滑的曲线轮廓2.参数:1)锥化栏:设置锥化的缩放程度和曲度数量:设置锥化的缩放程度。 值大于0,锥化端产生放大的效果,下方锥化;值小于0,锥化端产生缩小的效果,上方锥化曲线:设置锥化曲线的弯曲程度,使锥化的表面产生弯曲的效果。 值大于0,曲线凸出;值小于0,曲线内凹2)锥化轴栏:设置锥化的轴向和效果主轴:锥化方向,默认为Z轴效果轴:设置产生影响效果的轴向。
    4.9 分 11 页 | 1.48 MB
本站APP下载(扫一扫)
活动:每周日APP免费下载全站文档
本站APP下载
热门文档