第1部分专题4第1讲
摘要:高考定位1.通过对近几年高考试题的分析可看出,空间几何体的命题形式比较稳定,多为选择题或填空题,有时也出现在解答题的某一问中,此类问题多为考查三视图的还原问题,且常与空间几何体的表面积、体积等问题交汇,是每年的必考内容.2.有关线线、线面、面面平行与垂直的证明.试题以解答题为主,常以多面体为载体,突出考查学生的空间想象能力及推理论证能力.热点聚焦·题型突破归纳总结·思维升华热点聚焦·题型突破归纳总结·思维升华热点一空间几何体的表面积和体积的求解[微题型1]以三视图为载体求几何体的表面积【例1-1】(2014·咸阳一模)某几何体的三视图如图(其中侧视图中的圆弧是半圆),则该几何体的表面积为().A.92+14πB.82+14πC.92+24πD.82+24π热点聚焦·题型突破归纳总结·思维升华解析由三视图可知:原几何体为一个长方体上面放着半个圆柱,其中长方体的长宽高分别为5,4,4,圆柱的底面半径为2,高为5,所以该几何体的表面积为:S=5×4+2×4×4+12×5×4+π×2+2π×2×5×2=92+14π.答案A2规律方法(1)若以三视图的形式给出,解题的关键是对给出的三视图进行分析,从中发现几何体中各元素间的位置关系及数量关系,得到几何体的直观图,然后根据条件求解.(2)多面体的表面积是各个面的面积之和,组合体的表面积应注意重合部分的处理.热点聚焦·题型突破归纳总结·思维升华[微题型2]以三视图为载体求几何体的体积【例1-2】(2014·辽宁卷)某几何体三视图如图所示,则该几何体的体积为().A.8-2πB.8-ππC.8-2πD.8-4热点
温馨提示:当前文档最多只能预览
5 页,若文档总页数超出了
5 页,请下载原文档以浏览全部内容。
本文档由 匿名用户 于 2020-11-10 10:18:02上传分享