大一《高等数学》期末考试题编汇总题
摘要:一、单项选择题(本大题有4小题,每小题4分,共16分)).1.设f(x)cosx(xsinx),则在x0处有((0)2(B)f�(0)1(C)f�(0)0(D)f(x)不可导.(A)f�1x,(x)333x,则当x1时()1x2..(A)(x)与(x)是同阶无穷小,但不是等价无穷小;(B)(x)与(x)是等价无穷设(x)小;(C)(x)是比(x)高阶的无穷小;(D)(x)是比(x)高阶的无穷小.xF(x)�(2tx)f(t)dt3.若().0�,其中f(x)在区间上(1,1)二阶可导且f(x)0,则(A)函数F(x)必在x0处取得极大值;(B)函数F(x)必在x0处取得极小值;(C)函数F(x)在x0处没有极值,但点(0,F(0))为曲线yF(x)的拐点;(D)函数F(x)在x0处没有极值,点(0,F(0))也不是曲线yF(x)的拐点。x2x22(A)2(B)2(C)x1(D)x2.二、填空题(本大题有4小题,每小题4分,共16分)4.5.lim(13x)2sinx.x0已知cosxcosx是f(x)的一个原函数,则f(x)dxxx.2n1(cos2cos2Lcos2)nnn6.n��n.lim12x2arcsinx11x21-2dx7..三、解答题(本大题有5小题,每小题8分,共40分)xy(x)以及y�(0).sin(xy)1确定,求y�8.设函数yy(x)由方程e19.设函数f(x)连续,g(x)�f(xt)dt0�论g(x)在x
温馨提示:当前文档最多只能预览
8 页,若文档总页数超出了
8 页,请下载原文档以浏览全部内容。
本文档由 匿名用户 于 2020-02-04 03:33:17上传分享