微积分基本公式
摘要:微积分公式Dxsinx=cosxcosx=-sinxtanx=sec2xcotx=-csc2xsecx=secxtanxcscx=-cscxcotxxDxsin-1(a)=1sin-1xdx=xsin-1x+√1−x2+Cax21a2x2xtan-1(a)=aax22xcot-1(a)=aax2xsec-1(a)=axa√1−x2+Ctan-1xdx=xtan-1x-?ln(1+x2)+Ccot-1xdx=xcot-1x+?ln(1+x2)+Csec-1xdx=xsec-1x-ln|x+|+Ccsc-1xdx=xcsc-1x+ln|x+√x2−122cos-1xdx=xcos-1x-√x2−1sin-1(-x)=-sin-1xcos-1(-x)=-cos-1xtan-1(-x)=-tan-1xcot-1(-x)=-cot-1xsec-1(-x)=-sec-1xcsc-1(-x)=-csc-1xxsinh-1(a)=ln(x+x2xcos-1(a)=xsinxdx=-cosx+Ccosxdx=sinx+Ctanxdx=ln|secx|+Ccotxdx=ln|sinx|+Csecxdx=ln|secx+tanx|+Ccscxdx=ln|cscx–cotx|+C|+C¿xcosh-1(a)=ln(x+axx2a2√x2−a2)x≧1x1a+xx1x+atanh-1(a)=2aln(a−x)|x|<1coth-1(a)=2aln(x−a)|x|>1xsech-1(a)=ln(√−1x+1−x2)0≦x≦1x2x1-
温馨提示:当前文档最多只能预览
8 页,若文档总页数超出了
8 页,请下载原文档以浏览全部内容。
本文档由 匿名用户 于 2020-01-26 10:32:25上传分享