年高考年模拟第五章第二节解三角形
摘要:第五章平面向量、解三角形第二节解三角形第一部分六年高考荟萃2010年高考题一、选择题1.(2010上海文)18.若△ABC的三个内角满足sinA:sinB:sinC5:11:13,则△ABC(A)一定是锐角三角形.(B)一定是直角三角形.(C)一定是钝角三角形.(D)可能是锐角三角形,也可能是钝角三角形.【答案】C解析:由sinA:sinB:sinC5:11:13及正弦定理得a:b:c=5:11:13521121320,所以角C为钝角由余弦定理得cosc25112.(2010湖南文)7.在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=2a,则A.a>bB.a<bD.a与b的大小关系不能确定C.a=b【命题意图】本题考查余弦定理,特殊角的三角函数值,不等式的性质,比较法,属中档题。3.(2010江西理)7.E,F是等腰直角△ABC斜边AB上的三等分点,则tan�ECF()A.1627B.23C.33D.34【答案】D【解析】考查三角函数的计算、解析化应用意识。解法1:约定AB=6,AC=BC=32,由余弦定理CE=CF=10,再由余弦定理得cos�ECF4,5解得tan�ECF34解法2:坐标化。约定AB=6,AC=BC=32,F(1,0),E(-1,0),C(0,3)利用向量的夹角公式得cos�ECF43,解得tan�ECF。544.(2010北京文)(7)某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为(A)2sin2co
温馨提示:当前文档最多只能预览
8 页,若文档总页数超出了
8 页,请下载原文档以浏览全部内容。
本文档由 匿名用户 于 2020-01-21 01:38:03上传分享