doc文档 高中数学立体几何大题综合

教育专区 > 幼儿教育 > 幼儿读物 > 文档预览
17 页 1559 浏览 6 收藏 4.8分

摘要:.大成培训立体几何强化训练1.如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.求证:(Ⅰ)直线EF∥平面ACD;(Ⅱ)平面EFC⊥平面BCD.BFEDCA2.如图,在直三棱柱ABC-A1B1C1中,E、F分别是A1B、A1C的中点,点D在B1C1上,A1D⊥B1C求证:(Ⅰ)EF∥平面ABC;(Ⅱ)平面A1FD⊥平面BB1C1C.C1A1DFB1ECAB3.如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,M、N分别为A1B、B1C1的中点.(Ⅰ)求证:BC∥平面MNB1;(Ⅱ)求证:平面A1CB⊥平面ACC1A1.C1NA1B1MCA.B .4.如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1,AC⊥BC,点D是AB的中点.(Ⅰ)求证:CD⊥平面A1ABB1;(Ⅱ)求证:AC1∥平面CDB1;ACDBC1A1B15.如图,已知正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点,E为BC的中点.(Ⅰ)求证:BD⊥平面AB1E;(Ⅱ)求直线AB1与平面BB1C1C所成角的正弦值;(Ⅲ)求三棱锥C-ABD的体积.6.如图,在正方体ABCD-A1B1C1D1中,F为AA1的中点.求证:(Ⅰ)A1C∥平面FBD;(Ⅱ)平面FBD⊥平面DC1B.D1A1C1B1FCDA.B .7.如图,在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.(Ⅰ)求证:EF∥平面CB1D1;(Ⅱ)求证:平面CAA1C1⊥平面CB1D1;D1C1A1B1EADCFB8.正三棱柱ABC-A1B1C1中,点D是BC的

温馨提示:当前文档最多只能预览 8 页,若文档总页数超出了 8 页,请下载原文档以浏览全部内容。
本文档由 匿名用户2019-09-16 04:23:44上传分享
你可能在找
  • 高中数学集合、逻辑、函数、向量、数列、不等式、立体几何综合测试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.每小题选出答案后,请填涂在答题卡上 .1.若非空集合S{1,2,3,4,5},且若aS,则必有6aS,则所有满足上述条件的集合S共有A.6个B.7个C.8个D.9个2.命题P:若函数fx有反函数,则fx为单调函数;命题Q: a2b1b2是不等式a1x2b1xc10与a2x2b2xc20(a1,,,,,题的为A.
    3.0 分 7 页 | 795.50 KB
  • 高中数学:立体几何优质讲义姓名:__________指导:__________日期:__________第1页共31页 第2页共31页 第3页共31页 第4页共31页 第5页共31页
    4.9 分 31 页 | 1.05 MB
  • .空间向量练习题1.如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.(Ⅰ)证明:平面PBE⊥平面PAB;(Ⅱ)求平面PAD和平面 PBE所成二面角(锐角)的大小.如图所示,以A为原点,建立空间直角坐标系.则相关各点的坐标分别是A(0,0,0),B(1,0,0),33133C(,,0),D(,,0),P(0,0,2),E(1,,0)
    3.0 分 6 页 | 282.00 KB
  • 有一次,班上的几个男生逃课去了山里,回来后班主任好好的训了他们一顿,我们女生都偷偷地准备好了看他们的笑话。 我合上书,一把抓过来,放学后一路跑回家,栽到花盆里。以后的日子里对它精心浇水、施肥,不想它竟一改野外随意匍匐的外形,长得修长而翠绿,叶片间点缀着密密麻麻的白色小花,朦胧的象一朵不谙世事的笑靥。 六福彩票官方网站www.6jkrp0.cn这些年,曾经一起在山上自由奔跑,大声唱歌的同伴们都已渐行渐远。再去那山里,人散后,山间清凉的风吹得下滚热的泪。“记得绿罗裙,处处怜芳草。”
    4.7 分 9 页 | 1.28 MB
  • 八毛八文库(www.8doc8.com)--两亿文档等你下载,什么都有,不信你来搜学生做题前请先回答以下问题问题1:几何综合问题的处理思路是:①______________,_____________; ②______________,_____________;③由因导果,执果索因;其中③中的“因”“果”分别指的是___________,______________,“由因导果,执果索因”是我们思考几何综合题的不同角度 问题2:直角特征:1.边:____________;2.角:______________________3.面积:直角边看成高(等面积结构)4.固定模型和用法:①直角+中点(______________
    3.0 分 7 页 | 859.91 KB
  • 高中“立体几何”测试卷一、选择题(4’×10=40’)1.一条直线与一个平面所成的角等于3,另一直线与这个平面所成的角是6.则这两条直线的位置关系()A.必定相交B.平行C.必定异面D.不可能平行。
    3.0 分 8 页 | 232.50 KB
  • 2019全国各地中考数学压轴大题几何综合七、最值综合题1.(2019•绍兴)有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料 ,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料? 如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.解:(1)①若所截矩形材料的一条边是BC,如图1所示:过点C作CF⊥AE于F,S1=AB•BC=6×5=30;②若所截矩形材料的一条边是AE,如图
    3.0 分 25 页 | 359.38 KB
  • 立体几何中的截面问题姓名:__________指导:__________日期:__________第1页共14页 第2页共14页 第3页共14页 第4页共14页 第5页共14页
    4.6 分 14 页 | 1.37 MB
  • 立几测001试一、选择题:1.a、b是两条异面直线,下列结论正确的是()A.过不在a、b上的任一点,可作一个平面与a、b都平行B.过不在a、b上的任一点,可作一条直线与a、b都相交C.过不在a、b上的任一点 ,可作一条直线与a、b都平行D.过a可以且只可以作一个平面与b平行2.空间不共线的四点,可以确定平面的个数为A.0B.13.在正方体ABCDC.1或4(19B.)A1B1C1D1中,M、N分别为棱AA1 、BB1的中点,则异面直线CM和D1N所成角的正弦值为A.
    3.0 分 68 页 | 5.78 MB
  • 2020年高考——立体几何1.(20全国Ⅰ文3).埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为 文11).已知△ABC是面积为D.32π93的等边三角形,且其顶点都在球O的4球面上.若球O的表面积为16π,则O到平面ABC的距离为A.3B.32C.1D.324.(20全国Ⅱ理7).右图是一个多面体的三视图 ,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为1 A.EC.GB.F5.(20全国Ⅱ理10).已知△ABC是面积为D.H93的等边三角形,且其顶点都在球
    4.7 分 6 页 | 469.78 KB
本站APP下载(扫一扫)
活动:每周日APP免费下载全站文档
本站APP下载
热门文档