高中数学立体几何大题综合
摘要:.大成培训立体几何强化训练1.如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.求证:(Ⅰ)直线EF∥平面ACD;(Ⅱ)平面EFC⊥平面BCD.BFEDCA2.如图,在直三棱柱ABC-A1B1C1中,E、F分别是A1B、A1C的中点,点D在B1C1上,A1D⊥B1C求证:(Ⅰ)EF∥平面ABC;(Ⅱ)平面A1FD⊥平面BB1C1C.C1A1DFB1ECAB3.如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,M、N分别为A1B、B1C1的中点.(Ⅰ)求证:BC∥平面MNB1;(Ⅱ)求证:平面A1CB⊥平面ACC1A1.C1NA1B1MCA.B.4.如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1,AC⊥BC,点D是AB的中点.(Ⅰ)求证:CD⊥平面A1ABB1;(Ⅱ)求证:AC1∥平面CDB1;ACDBC1A1B15.如图,已知正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点,E为BC的中点.(Ⅰ)求证:BD⊥平面AB1E;(Ⅱ)求直线AB1与平面BB1C1C所成角的正弦值;(Ⅲ)求三棱锥C-ABD的体积.6.如图,在正方体ABCD-A1B1C1D1中,F为AA1的中点.求证:(Ⅰ)A1C∥平面FBD;(Ⅱ)平面FBD⊥平面DC1B.D1A1C1B1FCDA.B.7.如图,在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.(Ⅰ)求证:EF∥平面CB1D1;(Ⅱ)求证:平面CAA1C1⊥平面CB1D1;D1C1A1B1EADCFB8.正三棱柱ABC-A1B1C1中,点D是BC的
温馨提示:当前文档最多只能预览
8 页,若文档总页数超出了
8 页,请下载原文档以浏览全部内容。
本文档由 匿名用户 于 2019-09-16 04:23:44上传分享